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In this paper, we propose a parallel Schwarz generalized eigen-oscillation spectral element
method (GeSEM) for 2-D complex Helmholtz equations in high frequency wave scattering
in dispersive inhomogeneous media. This method is based on the spectral expansion of
complex generalized eigen-oscillations for the electromagnetic fields and the Schwarz
non-overlapping domain decomposition iteration method. The GeSEM takes advantages
of a special real orthogonality property of the complex eigen-oscillations and a new radi-
ation interface condition for the system of equations for the spectral expansion coefficients.
Numerical results validate the high resolution and the flexibility of the method for various
materials.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

High frequency wave scattering in dispersive inhomogeneous media is one of the most challenging tasks facing the com-
putational electromagnetics research communities. Several numerical methods have been used to simulate wave propaga-
tions in such inhomogeneous media, including the integral equation method [1], the finite difference time domain (FDTD)
method [2], the finite element (FE) method [3], and the discontinuous Galerkin time domain (DGTD) method [4]. There
are two related approximation issues in computing high frequency wave scattering in general media: (a) the approximation
of inhomogeneity of the media and (b) the resolution of diffractions and interferences of high frequency waves in such med-
ia. Moreover, parallelization is a must-have for the numerical algorithms in realistic problems.

In this paper, a generalized eigen-oscillation spectral element method (GeSEM) is proposed where a Schwarz non-over-
lapping domain decomposition [5–8] is used to produce a highly parallel iterative algorithm for 2-D electromagnetic scat-
tering problems. On the one hand, to handle the inhomogeneity of the media, piecewise polynomial approximations of
the position dependent dielectric constant are used. On the other hand, to resolve high frequency waves, we employ a
spectral method using complex generalized eigen-oscillations of non-self-adjoint complex Helmholtz operator along one
. All rights reserved.
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of the coordinate directions. The reduced Helmholtz equations in the other direction are then solved with a Schwarz domain
decomposition iterative scheme equipped with appropriate radiation interface conditions. The Schwarz domain decomposi-
tion methods for Helmholtz equations were studied in [5–8] where a radiation interface condition (Robin type) ensured the
convergence of non-overlapping Schwarz iterations. Later, optimized radiation conditions were proposed, which realized
higher order approximations of the radiation operator along the interface via tangential differential operators [9]. In the pro-
posed GeSEM, we will extend the classical Enquist–Majda one way absorbing boundary condition [10] to a system of coupled
equations for the spectral expansion coefficients in the reduced Helmholtz equations.

Traditionally, spectral methods based on eigenfunctions of singular Sturm–Liouville (S–L) operators have enjoyed many
successes in the computational fluid dynamics and electromagnetics [11,12] due to the optimal resolution power of the Fou-
rier expansions using such eigenfunctions. In general, either the Fourier exponentials or Chebyshev/Legendre orthogonal
polynomials are used for the periodic or non-periodic problems, respectively. These basis functions form an orthogonal basis
of a properly weighted L2 space as a result of the Hermiticity of the S–L differential operators. However, there is a large class
of problems, most importantly in the electromagnetic wave scattering in dispersive media such as metallic materials in
phase shift mask of lithography for the VLSI process applications and soils in geophysical applications, where the dielectric
constants are complex quantities. The relevant Helmholtz differential operators are no longer Hermitian, therefore, real
eigenvalues and orthogonal eigenfunctions are not available for spectral representations of field solutions in such dispersive
media. Nonetheless, there has been some work using the so-called generalized eigen-oscillations to study wave diffractions
in dispersive media [13]. One of the unique properties of the complex generalized eigen-oscillations is a ‘‘real orthogonality”
with a real inner-product between two complex functions. This real orthogonality allows the recovery of the expansion coef-
ficients of a complex-valued function in terms of the generalized eigen-oscillations. Based on this property, we propose the
GeSEM for scattering in dispersive media. It is important to note that the mathematical theory of the completeness, conver-
gence and stability of the generalized eigen-oscillations is an ongoing research topic [14,15]. Thus, the focus of this paper is
the construction of the numerical algorithm and its validation through tests to show the potential of the proposed method as
a viable efficient method for scattering of high frequency waves in inhomogeneous dispersive media.

The computation of the eigenvalues and eigen-oscillations of complex Helmholtz equations is critical for a successful
spectral method. The expansion of a function with these eigen-oscillations requires high degree of accuracy. Several numer-
ical methods have been applied for computing complex Helmholtz eigenvalue problems such as multigrid methods [16] and
high order nodal discontinuous Galerkin (DG) methods [17] for the multidimensional Maxwell eigenvalue problem. In [18],
the authors discuss the issues of spurious eigenvalues of linear elliptic problems. In [19], it is shown that a wide class of sta-
bilized DG methods can provide a spectrally correct approximation of the Laplace operator. In this paper, a stabilized DG
method will be used to compute the eigenvalues and eigen-oscillations of complex Helmholtz operators.

One of the immediate applications of the proposed GeSEM is in the area of grating diffractions. A popular method for
modeling grating structure, approximated by piecewise constant dielectric materials, is the Rigorous Coupled-Waveguide
Analysis (RCWA), first proposed by Nyyssonen in [20] for the rigorous modeling of optical line-width measurement. Yuan
applied this method to model light diffractions for 2D phase shift masks [21]. It is later extended to the modeling of 3D
geometries mask [22]. In the RCWA, both the material properties and electromagnetic fields in each horizontal layer are ex-
panded into Fourier series, algebraic equations for the expansion coefficients result from the Maxwell equations and the
interface conditions between adjacent horizontal layers. Due to the use of Fourier series expansion, the RWCA is only appli-
cable to periodic structures, thus edge effects in a grating will not be modeled correctly [23], and the method is not designed
for parallel implementations. The RWCA may also have difficulties [24] when the number of grating elements become ex-
tremely large and the material is highly dissipative as in VLSI lithography masks due to the well-known Gibbs phenomena
of Fourier expansion of discontinuous data [11]. The GeSEM is proposed to resolve these important issues, which will have
impacts on the simulation of large scale mask in VLSI lithography processes (refer to [23] for a detailed comparison study
regarding these issues between the RCWA and the GeSEM for modeling realistic alternating phase shift masks).

The rest of this paper is organized as follows. Section 2 describes the eigen-oscillation problem for complex Helmholtz
equations with piecewise smooth complex coefficients. We also give a real orthogonality result of the generalized eigen-
oscillations, important for spectral expansions of functions. Section 3 presents the GeSEM for scattering in 2-D inhomoge-
neous dispersive media. In Section 4, a Schwarz non-overlapping domain decomposition version of the GeSEM is proposed
with appropriate radiation interface conditions. Section 5 discusses the high order approximation by DG methods for the
eigen-oscillations and the eigenvalues. Numerical results in Section 6 demonstrate the fast convergence and high resolution
power of the GeSEM for problems including those arising from phase shift mask where high frequency scattering through
metal gratings is involved. Finally, a conclusion and discussion of the GeSEM are given in Section 7.

2. The generalized eigen-oscillations and real orthogonality

We consider the following generalized eigenvalue problem for a non-self-adjoint complex Helmholtz equation with
homogeneous Dirichlet conditions at the end boundaries
d
dt pðtÞ du

dt

� �
þ rðtÞu ¼ kwðtÞu for t 2 ½�L; L�;

uð�LÞ ¼ uðLÞ ¼ 0;

(
ð1Þ
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where p(t), r(t) and w(t) are piecewise continuous complex functions. For electromagnetic scattering problems to be consid-
ered, we have
Fig. 1.
decomp
pðtÞ ¼ wðtÞ ¼ 1=qðtÞ; ð2Þ

where qðtÞ ¼
�ðtÞ — Permittivity for transverse electric ðTEÞ wave;
lðtÞ — Permeability for transverse magnetic ðTMÞ wave:

�

and
rðtÞ ¼ x2l — for transverse electric ðTEÞ wave;
x2� — for transverse magnetic ðTMÞ wave:

(

Assume that the interval [�L,L] has been partitioned into the following mesh
�L ¼ t0 < t1 < � � � < tN ¼ L: ð3Þ
In each subinterval Ii = (ti�1,ti), q(t) is a smooth function and ui satisfies
1
q

u0i

� �0
þ rui ¼ k

1
q

ui; in Ii; for i ¼ 1; . . . ;N; ð4Þ
and at each interior interface ti, i = 1, . . . ,N � 1, we impose the following transmission conditions:
uiðt�i Þ ¼ uiþ1ðtþi Þ; ð5Þ
1
q�i

u0iðt�i Þ ¼
1
qþi

u0iðtþi Þ; ð6Þ
where q�i ¼ qðt�i Þ. And, at the end boundaries, homogeneous Dirichlet boundary conditions are given
u1ðt0Þ ¼ 0; uNðtNÞ ¼ 0: ð7Þ
The homogeneous boundary conditions in (7) arise from the use of perfect matched layer (PML) absorbing boundary condi-
tions [25] for the computations of scattering waves (refer to Fig. 1 for the computational domain setup).

Multiplying (4) with a test function vi and integrating by part, we obtain
�
Z ti

ti�1

1
q

u0iv
0
idsþ 1

q
u0ivijti

ti�1
þ
Z ti

ti�1

ruivids ¼ k
Z ti

ti�1

1
q

uivids: ð8Þ
Summing (8) over all subintervals and applying the transmission conditions (5) and (6) and boundary conditions (7), we ar-
rive at the following weak formulation for the eigenvalue problem: find u 2 H1

0ð�L; LÞ and k 2 C such that
�
Z L

�L

1
q

u0v0dsþ
Z L

�L
ruvds ¼ k

Z L

�L

1
q

uvds ð9Þ
for all v 2 H1
0ð�L; LÞ.
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Incident wave in a layered medium with PMLs on the top and at the bottom. Dashed vertical lines together with the horizontal lines form the domain
osition for a multi-domain GeSEM with a different dielectric constant in each of the rectangular subdomains.
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We present the following lemma on the orthogonality of the eigen-oscillations and its proof is straightforward, thus
omitted.

Lemma 2.1 (Real orthogonality). Suppose un and um are eigen-oscillations corresponding to two different eigenvalues kn and km,
then, un and um are orthogonal in the sense of
Z L

�L

1
q

unumds ¼ 0: ð10Þ
Remark 1. We would like to point out that the eigen-oscillations {un} do not enjoy the Hermitian orthogonality, i.e.
Z L

�L

1
q

umunds–0 for n–m: ð11Þ
Assuming that the eigen-oscillations fung1n¼1 form a complete basis in H1
0ð�L; LÞ and for all n,

R L
�L

1
q ununds–0, we would like to

estimate the decay rate of the coefficients of a function u which has been expressed in terms of the eigen-oscillations, i.e.
u ¼
X1
n¼1

Anun and An ¼
R L
�L

1
q uundsR L

�L
1
q ununds

: ð12Þ
It can be easily verified by using the differential equation (1) and an integration by part that
An ¼ Oðk�1
n Þ: ð13Þ
For self-adjoint problems, i.e. q(t), r(t) are real, the following asymptotic formula holds (see [26])
kn ¼ Oðn2Þ; as n!1: ð14Þ
If the q is a small complex-perturbation of a real coefficient of a self-adjoint S–L problem, then Theorem 3.5.1 in [26] guar-
antees the eigenvalues of the complex S–L problem have the following asymptotic property:
jknj ¼ Oðn2Þ; as n!1: ð15Þ
3. Generalized eigen-oscillations spectral element method (GeSEM) for 2-D complex Helmholtz equations

Consider the following time harmonic Maxwell’s equations:
r�H ¼ �ix�E; ð16Þ
r � E ¼ ixlH; ð17Þ
r � ð�EÞ ¼ 0; ð18Þ
r �H ¼ 0: ð19Þ
By eliminating either E or H from Eqs. (16) and (17), we have a vector Helmholtz equation for H
�r� 1
�
r�H

� �
þx2lH ¼ 0; ð20Þ
or for E
�r� 1
l
r� E

� �
þx2�E ¼ 0: ð21Þ
For a TE-polarized wave, the magnetic field has only a z-component, i.e., H = (0,0,Hz), resulting in a scalar Helmholtz equa-
tion for Hz
o

ox
1
�

oHz

ox

� �
þ o

oy
1
�

oHz

oy

� �
þx2lHz ¼ 0; ð22Þ
with the following interface conditions:
½Hz� ¼ 0;
1
�

oHz

on

� �
¼ 0; ð23Þ
where [�] denotes the jump and o
on is the normal derivative at a material interface.

Similarly, for a TM-polarized wave, the electric field has only a z-component, i.e., E = (0,0,Ez), which again satisfies a scalar
Helmholtz equation
o

ox
1
l

oEz

ox

� �
þ o

oy
1
l

oEz

oy

� �
þx2�Ez ¼ 0; ð24Þ
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with the interface conditions
½Ez� ¼ 0;
1
l

oEz

on

� �
¼ 0: ð25Þ
3.1. Single domain case – a layered media

Consider a layered media with an incident plane wave impinging from above and piecewise constant � (see Fig. 1). The
top and bottom of the computational domain are terminated by two layers of PML regions defined in Section 6.1.

The total field Hz can be decomposed into the incident field and the scattering field
Hzðx; yÞ ¼ Hi
zðx; yÞ þ Hs

zðx; yÞ; y > 0;
Hzðx; yÞ ¼ Hs

zðx; yÞ; y < 0;

(
ð26Þ
and satisfies the following transmission conditions on material interfaces:
Hzðx; y�i Þ ¼ Hzðx; yþi Þ;
1

�ðy�
i
Þ

oHzðx;y�i Þ
oy ¼ 1

�ðyþ
i
Þ

oHzðx;yþi Þ
oy ;

8<: ð27Þ
where yi is the interface between layer i and i + 1. From the continuity of Hz across the horizontal material interfaces, we
obtain the transmission conditions for the scattering waves at yi – 0
Hs
zðx;0

�Þ ¼ Hs
zðx; 0

þÞ;
1

�ðy�
i
Þ

oHs
zðx;y�i Þ
oy ¼ 1

�ðyþ
i
Þ

oHs
zðx;yþi Þ
oy :

8<: ð28Þ
On the interface yi = 0, we have
Hs
zðx;0

�Þ � Hs
zðx;0

þÞ ¼ Hi
zðx; 0

þÞ;
1

�ð0�Þ
oHs

z
oy ðx; 0

�Þ � 1
�ð0þÞ

oHs
z

oy ðx;0
þÞ ¼ 1

�ð0þÞ
oHi

z
oy ðx; 0

þÞ:

8<: ð29Þ
Moreover, at the outer boundaries of the PML regions in Fig. 1, homogeneous Dirichlet boundary conditions are imposed for
the scattering waves, namely,
Hs
zðx;�LÞ ¼ 0: ð30Þ
Now, let {/p(y)} be the eigen-oscillations of the generalized eigenvalue problem of (1) with q = � and suitable PML absorbing
boundary conditions at the ends. Consider the following series expansion of the scattering wave:
Hs
zðx; yÞ ¼ aðxÞn1ðyÞ þ bðxÞn2ðyÞ þ

X1
p¼1

cpðxÞ/pðyÞ: ð31Þ
The first two terms in (31) will be chosen to account for the inhomogeneous interface conditions (29) at y = 0 while the series
expansion will satisfy the homogeneous interface conditions at all y = yi. Meanwhile, both of them will satisfy the Helmholtz
equation (22).

Plugging the expansion in (31) into the Helmholtz equation (22) and using (1), we have
X1
p¼1

kpcpðxÞ þ c00pðxÞ
h i 1

�ðyÞ/pðyÞ ¼ 0:
From the real orthogonality condition (10), we can see that cp(x) satisfies
c00pðxÞ þ kpcpðxÞ ¼ 0; ð32Þ
whose general solution is given by
cpðxÞ ¼ Ap expð�i
ffiffiffiffiffi
kp

p
xÞ þ Bp expði

ffiffiffiffiffi
kp

p
xÞ: ð33Þ
Next, to derive the expression of a(x)n1(y) + b(x)n2(y), we consider the function
D1ðx; yÞ ¼ aðxÞn1ðyÞ; ð34Þ
where
aðxÞ ¼ Hi
zðx;0

�Þ: ð35Þ
If the incident wave is a plane wave given by
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Hi
z ¼ H0 expð�ikxx� ikyyÞ; ð36Þ
we have
a00ðxÞ ¼ o2

ox2 Hi
zðx;0Þ ¼ �k2

x Hi
zðx; 0Þ; ð37Þ
then
a00ðxÞ ¼ �k2
xaðxÞ: ð38Þ
Plugging (34) into (22), we have
aðxÞ 1
�ðyÞ n

0
1ðyÞ

� �0
þ 1
�ðyÞa

00ðxÞn1ðyÞ þx2laðxÞn1ðyÞ ¼ 0:
Using (38), we obtain
aðxÞ 1
�ðyÞ n

0
1ðyÞ

� �0
þx2ln1ðyÞ �

k2
x

�ðyÞ n1ðyÞ
" #

¼ 0:
Hence, we can see that n1(y) can be selected as the solution of the following problem to account for the inhomogeneous jump
conditions for the function at y = 0:
1
�ðyÞ n

0
1ðyÞ


 �0
þ ½x2l� k2

x
�ðyÞ�n1ðyÞ ¼ 0;

n1ð�LÞ ¼ 0;
n1ð0�Þ � n1ð0þÞ ¼ 1;

1
�ð0�Þ n

0
1ð0

�Þ � 1
�ð0þÞ n

0
1ð0

þÞ ¼ 0:

8>>>>><>>>>>:
ð39Þ
Similarly, we set the function
D2ðx; yÞ ¼ bðxÞn2ðyÞ; ð40Þ
where
bðxÞ ¼ o

oy
Hi

zðx; 0
þÞ: ð41Þ
And n2(y) can be defined to account for the inhomogeneous jump conditions for the derivative of the function value at y = 0
1
�ðyÞ n

0
2ðyÞ


 �0
þ ½x2l� k2

x
�ðyÞ�n2ðyÞ ¼ 0;

n2ð�LÞ ¼ 0;
n2ð0�Þ � n2ð0þÞ ¼ 0;

1
�ð0�Þ n

0
2ð0

�Þ � 1
�ð0þÞ n

0
2ð0

þÞ ¼ 1
�ð0þÞ :

8>>>>><>>>>>:
ð42Þ
Finally, we can easily verify that
Hs
zðx; yÞ ¼ aðxÞn1ðyÞ þ bðxÞn2ðyÞ þ

X1
p¼1

cpðxÞ/pðyÞ; ð43Þ
solves Eq. (22) with interface conditions (23) for an incident plane wave given by (36).
Similar formulation can be done for the Ez component for TM-polarized waves.

3.2. Multi-domain case - general inhomogeneous media

We consider the scattering of an incident plane wave in an inhomogeneous media where the dielectric constant is
approximated by piecewise constants or linear polynomials over each rectangular subdomain Xi,j (formed by horizontal so-
lid lines and vertical dashed lines in Fig. 1), i.e.
�ijðx; yÞ ¼ �x
ij þ �

y
ij; ðx; yÞ 2 Xi;j; ð44Þ
where �x
ij and �y

ij are constants (TE wave) or linear functions (TM wave) of x and y, respectively. By selecting the size of Xi,j, we
can approximate general inhomogeneous media within any given accuracy.

3.2.1. TE wave
For the TE case, in each vertical strip region, Xi = [j Xi,j = {(x,y)j,xi�1 6 x 6 xi}, �ij(x,y) is assumed to be constant in each

subdomain Xi,j and we can set �x
ij ¼ 0, and �y

ij ¼ �ijðx; yÞ. Now Hs
zðx; yÞ can be written as
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Hs
zðx; yÞ ¼ aiðxÞni

1ðyÞ þ biðxÞni
2ðyÞ þ

X1
p¼1

ci
pðxÞ/

i
pðyÞ; ð45Þ
where /i
pðyÞ is the eigen-oscillation satisfying
1
�y

i;�
ð/i

pðyÞÞ
0

 !0
þx2l/i

pðyÞ ¼ ki
p

1
�y

i;�
/i

pðyÞ; ð46Þ
and ni
1ðyÞ and ni

2ðyÞ are determined by Eqs. (39) and (42).
Plugging the expansion (45) into (22), we can get
X1
p¼1

ci
pðxÞ

1
�y

i;�
ð/i

pðyÞÞ
0

 !0
þ 1
�y

i;�
ðci

pðxÞÞ
00/i

pðyÞ
" #

þx2
X1
p¼1

cpðxÞ/i
pðyÞ ¼ 0;
which yields
X1
p¼1

d2

dx2 ci
pðxÞ þ kpci

pðxÞ
" #

1
�y

i;j

/pðyÞ ¼ 0: ð47Þ
Using the real orthogonality of the eigen-oscillations (10), we get
d2

dx2 ci
q þ kqci

q ¼ 0: ð48Þ
Rewriting the above equations into a vector form, we have
d2

dx2 Ci þKiCi ¼ 0; ð49Þ
where Ci ¼ ðci
1; . . . ; ci

NÞ
T, and Ki is defined by
Ki
pq ¼ kqdpq; ð50Þ
and is a complex diagonal matrix. Here dpq is the Kronecker delta function. Eq. (49) will be solved analytically or by a Cheby-
shev collocation method especially in the TM wave case below when Ki is not a diagonal matrix anymore and becomes a
function of x.

3.2.2. TM wave
For the TM case, the Helmholtz equation (22) for the Ez component can be rewritten as
o

ox
1
l

oEz

ox

� �
þ o

oy
1
l

oEz

oy

� �
þx2ð�x

ij þ �
y
ijÞEz ¼ 0; ðx; yÞ 2 Xi;j ð51Þ
where �x
ij and �y

ij in principle can be any function of x and y (taken to be linear though in this paper), respectively.
In each vertical strip region, Xi = [jXi,j = {(x,y)j,xi�1 6 x 6 xi}, Es

zðx; yÞ can be written as
Es
zðx; yÞ ¼ aiðxÞni

1ðyÞ þ biðxÞni
2ðyÞ þ

X1
p¼1

ci
pðxÞ/

i
pðyÞ: ð52Þ
Here /i
pðyÞ is the eigen-oscillation satisfying
1
l
ð/i

pðyÞÞ
0

� �0
þx2�y

ij/
i
pðyÞ ¼ ki

p
1
l

/i
pðyÞ: ð53Þ
And ni
1ðyÞ and ni

2ðyÞ satisfy Eqs. (39) and (42) with all � and l exchanged for each strip Xi.
Again, using the real orthogonality of the eigen-oscillations (10), we get
d2

dx2 ci
qðxÞ þ kqci

q þ Rpji
pqci

p ¼ 0: ð54Þ
where
ji
pq ¼ ji

pqðxÞ ¼ x2
Z L

�L

�x
ij

l
/i

pðyÞ/
i
qðyÞdy; ð55Þ
which results in the same form of equations for the coefficient Ci as in (49), and here Ki defined by Ki
pq ¼ kqdpq þ ji

pq will be a
complex symmetric matrix which can not be diagonalized in general and Ki = Ki(x) is a function of x within each subdomain
Xi.
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4. Parallel Schwarz GeSEM

In this section, we will apply a non-overlapping Schwarz domain decomposition method to implement the multi-domain
GeSEM proposed in the previous section with appropriate radiation interface conditions for the coupled 1-D systems for the
expansion coefficients C in (49).

4.1. Radiation conditions

Since in general the matrix K can not be diagonalized, the traditional Enqusit–Majda’s one-way wave condition [10] for
the scalar case does not apply. Here, we will propose a more general radiation condition for the case of non-diagonalizable
matrix K.

4.1.1. A simple case – 2 � 2 Jordan block
Suppose after a similarity transformation by a complex matrix U, K becomes a 2 � 2 Jordan block, i.e.
UKU�1 ¼
k 1
0 k

� �
¼ k2 1

0 k2

" #
: ð56Þ
Defining D ¼ UC ¼ d1

d2

� �
and assuming constant U near the boundary points, the new variable D satisfies" #
d1

d2

� �00
þ k2 1

0 k2

d1

d2

� �
¼ 0: ð57Þ
The second variable d2 satisfies
d002 þ k2d2 ¼ 0; ð58Þ
whose general solution can be written as
d2ðxÞ ¼ c1 expðikxÞ þ c2 expð�ikxÞ: ð59Þ
In an interval [a,b], the radiation condition for d2(x) at x = b is
d
dx
þ ik

� �
d2jx¼b ¼ 0; ð60Þ
which is the same as the traditional one-way radiation condition.
To find the radiation condition for d1(x) which satisfies
d001 þ k2d1 ¼ �d2; ð61Þ
where d2 acts as a resonant forcing term, we write the general solution for d1 as
d1ðxÞ ¼ ðe1xþ f1Þ expðikxÞ þ ðe2xþ f2Þ expð�ikxÞ: ð62Þ
Term (e2x + f2)exp(�ikx) then satisfies
½expðikxÞd1ðxÞ�00 ¼ ðe2xþ f2Þ00 ¼ 0; ð63Þ
so
½d001 þ 2ðikÞd01 þ ðikÞ
2d1�jx¼b ¼ 0: ð64Þ
Using (61), we can get
2ikd01 � 2k2d1 � d2 ¼ 0; ð65Þ
which is the radiation condition for d1 at x = b.

4.1.2. General case – n � n Jordan block
In fact, we can rewrite the radiation condition for the above simple case as
d
dx

d1

d2

� �
þ iK

d1

d2

� �
¼ 0; ð66Þ
where
K ¼ k 1
2k

0 k

" #
: ð67Þ
It is easy to check that
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K2 ¼ K;
thus, K is simply the square root of K
K ¼
ffiffiffiffi
K
p

: ð68Þ
Therefore, in the case of a n � n Jordan block UK U�1 = k2I + C, where
C ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. . .
. . .

. ..
.

0 0 � � � 0 1
0 0 � � � 0 0

26666664

37777775
n�n

; ð69Þ
from mathematical induction, we can show that
K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2I þ C

q
¼ k I þ 1

k2 C
� �1

2

¼ k
Xn�1

l¼0

f ðlÞð0Þ
l!

1

k2l
Cl; ð70Þ
where
f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
: ð71Þ
Therefore, the radiation boundary condition is
d
dx

d1

..

.

dn

2664
3775þ iK

d1

..

.

dn

2664
3775 ¼ 0; ð72Þ
which reads in term of the original variable
d
dx

C þ iKC ¼ 0: ð73Þ
4.2. Schwarz GeSEM

Using the complex generalized eigen-oscillations along y direction, the Helmholtz equations (22) or (24) are reduced to a
system of 1-D Helmholtz equations (49) in x-direction. A Schwarz domain decomposition iterative scheme will be used to
solve (49) with the radiation interface conditions. Fig. 2 is the sketch for the Schwarz iteration, in order to compute the solu-
tion in subdomain Ij = [xj�1,xj] for the iteration step n, the information on the neighboring domain Ij�1 and Ij+1 at the previous
step n � 1 is used to provide the boundary condition at xj�1, xj by a Robin boundary condition using the radiation operator in
(73).

4.2.1. TM wave
The solutions for the scattering wave Es

z;j in different strips are connected by interface condition (25) via the radiation
operator (73) with the eigen-oscillation expansion for the Es

z;j in (52) for adjacent strips and the real orthogonality property
(10) of the eigen-oscillations, namely
cj
q ¼ gj �

R L
�Lðajþ1njþ1

1 þ bjþ1njþ1
2 þ Rcjþ1

p /jþ1
p Þ/

j
qdy�

R L
�Lðajnj

1 þ bjnj
2Þ/

j
qdy;

dcj
q

dx ¼ fj �
R L
�L

dajþ1

dx njþ1
1 þ dbjþ1

dx njþ1
2 þ R

dcjþ1
q

dx /jþ1
p

� �
/j

qdy�
R L
�L

daj

dx nj
1 þ

dbj

dx nj
2


 �
/j

qdy;

8><>: ð74Þ
which can be combined into the radiation operator (73) to give the following radiation interface condition for the GeSEM at
the right end boundary of the subdomain Ij
dCj

dx
þ iKðx�j ÞC

j ¼ F þ iKðx�j ÞG; ð75Þ
where Cj ¼ fcj
1; c

j
2; c

j
3; . . .g, F ¼ FðCjþ1;ajþ1; bjþ1; njþ1

1 ; njþ1
2 Þ � ffjg and G = G(Cj+1,a,b,n1,n2) � {gj}.
Fig. 2. Schwarz iteration in x-direction.
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A similar radiation interface condition at the left end boundary of subdomain Ij+1 can be obtained
dCjþ1

dx
� iKðxþj ÞC

jþ1 ¼ F � iKðxþj ÞG; ð76Þ
where F ¼ FðCj;aj; bj; nj
1; n

j
2Þ � ffjg;G ¼ GðCj;a; b; n1; n2Þ � fgjg, and
gj ¼
R L
�Lðajnj

1 þ bjnj
2 þ Rcj

p/
j
pÞ/

jþ1
q dy�

R L
�Lðajþ1njþ1

1 þ bjþ1njþ1
2 Þ/

jþ1
q dy;

fj ¼
R L
�L

daj

dx nj
1 þ

dbj

dx nj
2 þ R

dcj
q

dx /j
p

� �
/jþ1

q dy�
R L
�L

dajþ1

dx njþ1
1 þ dbjþ1

dx njþ1
2


 �
/jþ1

q dy:

8><>: ð77Þ
Finally, for the end boundaries, we simply have an homogeneous radiation condition
dCj

dx
� iKCj ¼ 0; ð78Þ
where K is evaluated inside the computational domain and +/� sign is for the right/left boundary of the computational do-
main, respectively.

4.2.2. TE wave
Similar procedure can be done for the TE wave, the solution for the scattering wave Hs

z;j in different strips is connected by
interface condition (23) via the radiation operator (73). Using the expansion for the Hs

z;j in (31) for adjacent strips and again
the real orthogonality property (10) of the eigen-oscillations, we have
cj
q ¼ g �

R L
�L

1
ey

j;�
ðajþ1njþ1

1 þ bjþ1njþ1
2 þ Rcjþ1

p /jþ1
p Þ/

j
qdy�

R L
�L

1
ey

j;�
ðajnj

1 þ bjnj
2Þ/

j
qdy;

dcj
q

dx ¼ f �
R L
�L

1
ey

jþ1;�

dajþ1

dx njþ1
1 þ dbjþ1

dx njþ1
2 þ R

dcjþ1
q

dx /jþ1
p

� �
/j

qdy�
R L
�L

1
ey

j;�

daj

dx nj
1 þ

dbj

dx nj
2


 �
/j

qdy;

8>><>>: ð79Þ
which can be combined into the radiation operator (73) for the following radiation interface condition for the GeSEM at the
right end boundary of the subdomain Ij
dCj

dx
þ iKðx�j ÞC

j ¼ F þ iKðx�j ÞG; ð80Þ
where Cj ¼ fcj
1; c

j
2; c

j
3; . . .g; F ¼ FðCjþ1;ajþ1; bjþ1; njþ1

1 ; njþ1
2 Þ � ffjg and
G ¼ GðCjþ1;ajþ1;bjþ1; njþ1
1 ; njþ1

2 Þ ¼ fgjg:
A similar radiation interface condition at the left end boundary of subdomain Ij+1 can be obtained
dCjþ1

dx
� iKðxþj ÞC

jþ1 ¼ F � iKðxþj ÞG; ð81Þ
where F ¼ FðCj;aj; bj; nj
1; n

j
2Þ � ffjg;G ¼ GðCj;aj; bj; nj

1; n
j
2Þ � fgjg,
gj ¼
R L
�L

1
ey
�;jþ1
ðajnj

1 þ bjnj
2 þ Rcj

p/
j
pÞ/

jþ1
q dy�

R L
�L

1
ey
�;jþ1
ðajþ1njþ1

1 þ bjþ1njþ1
2 Þ/

jþ1
q dy;

fj ¼
R L
�L

1
ey
�;j

daj

dx nj
1 þ

dbj

dx nj
2 þ R

dcj
q

dx /j
p

� �
/jþ1

q dy�
R L
�L

1
ey
�;j

dajþ1

dx njþ1
1 þ dbjþ1

dx njþ1
2


 �
/jþ1

q dy:

8>><>>: ð82Þ
Finally, for the end boundaries, we simply have an homogeneous radiation condition
dCj

dx
� iKCj ¼ 0: ð83Þ
It is clear that the solution at the current time step in Ij only depends on the solution at previous step in neighboring sub-
domains, as a result, this algorithm is highly parallel.

Remark 2. The convergence of the proposed Schwarz GeSEM depends strongly on the magnitude of the imaginary parts of
the eigenvalues in K as shown in Appendix for the case of two subdomains.
5. Numerical issues of eigen-oscillations and eigenvalues

5.1. Computations of eigen-oscillations by DG Methods

In this section, we apply the DG method for the generalized eigenvalue problem. For illustration purpose, we set r(t) = 1 in
(1). Following [27], we introduce
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q ¼ u0ðtÞ;
and obtain a first-order system
d
dx

1
qðtÞ qðtÞ
� �

þ u ¼ k
1

qðtÞu; ð84Þ

u0ðtÞ � qðtÞ ¼ 0: ð85Þ
Discretize [�L,L] into N elements uniformly and let Ij = [tj�1,tj]. For simplicity, the interfaces of the material layers coincide
with the interfaces of mesh grids and we define the finite element space as
Vh ¼ fv 2 L2ð�L; LÞ : vjIj
2 PkðIjÞ; j ¼ 1; . . . ;Ng;
where Pk denotes the space of polynomials on Ij of degree at most k. The discrete eigenvalue problem is then to find (k,uh,qh)
such that
�
Z

Ij

1
q

qh
dvh;u

dt
dsþ hq;jþ1=2vh;uðt�jþ1Þ � hq;jvh;uðtþj Þ þ

Z
Ij

uhvh;uds ¼ k
Z

Ij

1
q

uhvh;udx 8vh;u 2 PkðIjÞ ð86Þ

�
Z

Ij

uh
dvh;q

dt
dsþ hu;jþ1=2vh;qðt�jþ1=2Þ � hu;j�1=2vh;qðtþj�1=2Þ ¼

Z
Ij

qhvh;qds 8vh;q 2 PkðIjÞ; ð87Þ
where (hq, j,hu,j) is the numerical flux defined by
hu;j ¼ fujg; ð88Þ

hq;j ¼ f
1
qj

qjg � Shð½uj�Þ; ð89Þ
when tj is an interior node and
hu;0 ¼ 0; ð90Þ

hq;j ¼
1
qj

qj � ShðujÞ; ð91Þ
when tj is a boundary node. Here, we used the notations
½wj� ¼ wþj �w�j ; fwjg ¼ ðwþj þw�j Þ=2;
across a mesh point tj.

Remark 3. The stabilization function Sh(�) is defined as Sh(/) = ah�1 with a > 0 independent of the mesh size. Note that this
choice of numerical flux leads to a stable DG method. For other choices of numerical flux and the general discussion of
stability issues, we refer to [28].

For t 2 Ij, let
uhðtÞ ¼
Xs

k¼1

uj
k/

j
kðtÞ; ð92Þ

qhðtÞ ¼
Xs

k¼1

qj
k/

j
kðtÞ; ð93Þ
where s is the total number of the basis functions and /k are basis functions.
On each interval Ij, same order of Legendre polynomials will be used as the basis functions for Pk(Ij) given by
/j
kðtÞ ¼ LkðnðtÞÞ; k ¼ 1;2; . . . ; s; t 2 Ij;

njðtÞ ¼ 2ðt � tj�1Þ
hj

;

where hj is the length of the jth interval and Lk is the Legendre polynomial of degree k � 1.
Using the definition of the numerical flux and replacing uh and qh defined above, we obtain from (86) and (87)
� Sj
qqj þ 1

2
Ur

1
qðt�jþ1Þ

UT
r qj þ 1

qðtþjþ1Þ
UT

l qjþ1

 !
� 1

2
Ul

1
qðt�j Þ

UT
r qj�1 þ 1

qðtþj Þ
UT

l qj

 !
�UrðUT

l ujþ1 �UT
l ujÞ þUlðUT

l uj �UT
l uj�1Þ þMjuj ¼ kMj

quj;

� Sjuj þ 1
2

UrðUT
r uj þUT

l ujþ1Þ � 1
2

UlðUT
r uj�1 þUT

l ujÞ ¼ Mjqj;
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where S and Sq are the local stiffness matrices given by
Sj
nm ¼

Z
Ij

/m
d/n

dt
ds;

Sj
q;nm ¼

Z
Ij

1
q

/m
d/n

dt
ds;
Mj and Mj
q are the local mass matrices given by
Mj
nm ¼

Z
Ij

/m/nds;

Mj
q;nm ¼

Z
Ij

1
q

/m/nds;
and Ur = (/1(1), . . . ,/s(1))T, Ul = (/1(�1), . . . ,/s(�1))T, uj ¼ ðuj
1; . . . uj

sÞT and qj ¼ ðqj
1; . . . qj

sÞT. To carry out the numerical imple-
mentation, we need to compute matrices Mj, Sj, Mj

q, Sj
q which are denoted simply as M and S when the same Lengendre basis

is used for each subdomain.
Collecting similar terms, we obtain
Dqj þ Eqjþ1 � Fqj�1 þ a
h
ðUrU

T
r þUlU

T
l Þuj � a

h
UrU

T
l ujþ1 � a

h
UlU

T
r uj�1 þMuj ¼ kMj

quj; ð94Þ

qj ¼ Auj þ Bujþ1 � Cuj�1; ð95Þ
where
A ¼ �M�1SþM�1

2
ðUrU

T
r �UlU

T
l Þ; B ¼ M�1

2
UrU

T
l ;

C ¼ M�1

2
UlU

T
r ; D ¼ �Sj

q þ
1
2

1
qðtþj Þ

ðUrU
T
r �UlU

T
l Þ;

E ¼ 1
2

1
qðtþjþ1Þ

UrU
T
l ; F ¼ 1

2
1

qðt�j Þ
UlU

T
r :
Now we have
Gj;j�2uj�2 þ Gj;j�1uj�1 þ Gj;juj þ Gj;j�1uj�1 þ Gj;jþ2ujþ2 ¼ kMj
quj; ð96Þ
where
Gj;j�2 ¼ FC; Gj;j�1 ¼ �DC � FA� a
h

UlU
T
r ;

Gj;j ¼ DA� EC � FBþ a
h
ðUrU

T
r þUlU

T
l Þ þM;

Gj;jþ1 ¼ DBþ EA� a
h

UrU
T
l ; Gj;jþ2 ¼ EB:
Finally, we obtain the following matrix representation for the eigen-oscillation problem (1) in the discretization of DG
approximation
Gu ¼ kMqu; ð97Þ
where u = (u1, . . . ,uN)T,
G ¼

G1;1 G1;2 G1;3 0 0 0 . . . 0 0 0
G2;1 G2;2 G2;3 G2;4 0 0 . . . 0 0 0
G3;1 G3;2 G3;3 G3;4 G3;5 0 . . . 0 0 0

0 G4;2 G4;3 G4;4 G4;5 G4;6 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . GN;N�2 GN;N�1 GN;N

0BBBBBBBBB@

1CCCCCCCCCA
;

and (96) will be solved by eigs in matlab which calls ARPACK (see [29]).

5.2. Examples of eigenvalues and eigen-oscillations

Let the interval [0,p] be discretized uniformly into N subintervals and two different profiles of �(x) will be considered as
follow
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Fig. 3. The convergence of the computed eigenvalues for different mesh points with a discontinuous Galerkin method for � = �A(x). On each subinterval, a
2nd order Legendre polynomial is used. Left: The relative error of the eigenvalue close to 1.479 + 0.1898i. Right: The relative error of the eigenvalue close to
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�AðxÞ :¼

1þ 0:5i; x 2 ½0;p=8Þ[ 2 ð7p=8;p�;
2; x 2 ½p=8;p=4� [ ½3p=4;7p=8�;
3; x 2 ½p=4;3p=8� [ ½5p=8;3p=4�;
4; x 2 ½3p=8;5p=8�;

8>>><>>>:

and
�BðxÞ :¼
1þ i; x 2 ð0;p=2Þ;
2; x 2 ðp=2;pÞ:

�
ð98Þ
Hence we have seven layers of dielectric materials in the first case and two layers in the second case. The convergence for
certain eigenvalues are shown in Figs. 3 and 4 shows the decrease of the relative error as the number of the grids N increases.

Next, we fix the number of subintervals (N = 64) and use different orders of Legendre polynomials as basis functions. The
relative error of the eigen-oscillation is calculated as follows. First, we calculated the eigen-oscillation us

n corresponding to
eigenvalue kn using Legendre polynomials of order s. Then we use Legendre polynomials of order s + 1 to obtain usþ1

n . The
relative error of the eigen-oscillation is given by
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40 + 0.7949i.
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Right: the eigen-oscillation for eigenvalue �2.591 + 0.2961i.
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esþ1 ¼ ku
sþ1
n � us

nkL2

kusþ1
n kL2

;

where the L2 norm is evaluated using Gaussian quadrature. We compute the relative error for s = 1 through s = 4. Fig. 5 shows
the relative L2 errors against the order of the Legendre polynomials in the calculated eigen-oscillations for two eigenvalues.

6. Numerical results for 2-D complex Helmholtz equations

6.1. PML boundary conditions for scattering waves

The homogeneous Dirichlet boundary conditions in the scattering wave (7) is achieved by terminating the computational
domain at the top and bottom with a PML layer [25] as indicated in Fig. 1. In this paper, we apply the formulation of Chew
and Weedon [30]. Define a complex-transform coordinate
ey ¼ yþ iffiffiffiffiffiffiffiffiffiffi
x2l

p Z y

a
rðsÞds;
where a is the starting position of the absorbing layer and r is some given function. In the absorbing layer, the above coor-
dinate stretching leads to the following equation
1þ iffiffiffiffiffiffiffiffiffiffi
x2l

p rðyÞ
 !

d
dy

1þ iffiffiffiffiffiffiffiffiffiffi
x2l

p rðyÞ
 !

dUPML

dy

 !
þx2l�ðyÞUPML ¼ 0;
or
d
dy

1þ iffiffiffiffiffiffiffiffiffiffi
x2l

p rðyÞ
 !

dUPML

dy

 !
þx2l�ðyÞ 1þ iffiffiffiffiffiffiffiffiffiffi

x2l
p rðyÞ

 !�1

UPML ¼ 0:
At y = ±L, we apply the homogeneous Dirichlet boundary conditions
UPMLð�LÞ ¼ 0: ð99Þ
6.2. Layered media

Now we consider the numerical calculation of Hs
z by truncating the series at Nth term in (43), i.e.
Hs
zðx; yÞ 	 aðxÞn1ðyÞ þ bðxÞn2ðyÞ þ

XN

p¼1

cpðxÞ/pðyÞ: ð100Þ
The calculation of Ap and Bp, p = 1, . . . ,N in (33) can be done by using the orthogonality of /p(y) together with suitable
boundary conditions. We assume the following Robin type boundary conditions
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oHs
z

ox
� ikxHs ¼ g1ðyÞ; at x ¼ 0; ð101Þ

oHs
z

ox
þ ikxHs ¼ g2ðyÞ; at x ¼ M: ð102Þ
Plugging (99) into above equations, multiplying with /p(y)/�(y) and integrating to obtain, for each p
½c0pð0Þ þ ikycpð0Þ�dp þ ða0ð0Þ þ ikyað0ÞÞep þ ðb0ð0Þ þ ikybð0ÞÞfp ¼ g1;p;

½c0pðMÞ þ ikycpðMÞ�dp þ ða0ðMÞ þ ikyaðMÞÞep þ ðb0ðMÞ þ ikybðMÞÞfp ¼ g2;p;
where
dp ¼ ð/p;/pÞ�; ep ¼ ðn1;/pÞ�; f p ¼ ðn2;/pÞ�; g1;p ¼ ðg1;/pÞ�; g2;p ¼ ðg2;/pÞ�;
and ðf ; gÞ� ¼
R L
�L

1
�ðyÞ f ðyÞgðyÞdy. Note that
ð/p;/qÞ� ¼ 0; p–q:
Hence we have two equations for Ap and Bp for each p = 1, . . . ,N and they can be solved easily.
For a numerical test, we consider a computation domain X = [0,p] � [�p,p] and
�ðyÞ :¼
1; y 2 ½�p;0Þ;
2þ i; y 2 ½0;p=2Þ;
3; y 2 ½p=2;p�:

8><>:

The incident wave is Hi

z ¼ expð�dkxx� dkyyÞ such that k2
x þ k2

y ¼ k2. For simplicity, kx = 1 is used in the following computa-
tion. To obtain n1, n2 and eigen-oscillations on [�p,p], we use 64 grid and Legendre polynomials of order 5 in each subinter-
val. Fig. 6 shows the computed n1(y) and n2(y) for k ¼

ffiffiffi
2
p

. Note the effects of PML layers on the solutions near two ends of the
computational domain.

Let
g1ðyÞ :¼
0:1� ðpþ yÞ; y 2 ½�p;0Þ;
0:1� ðp� yÞ; y 2 ½0;p�;

�

and g2(y) = �g1(y). We use 40 eigen-oscillations in (43). For k ¼

ffiffiffiffiffiffiffiffiffiffi
1:01
p

, k ¼
ffiffiffi
2
p

and k ¼
ffiffiffiffiffiffiffiffiffi
101
p

, the numerical approximation
by the series expansion is shown to have converged. Fig. 7 shows two eigen-oscillations /4 and /15 for k ¼

ffiffiffi
2
p

. In Fig. 8, we

plot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jApj2 þ jBpj2

q
for different wavenumbers. Fig. 9 shows the computed Hs

z with k ¼
ffiffiffiffiffiffiffiffiffiffi
1:01
p

, k ¼
ffiffiffi
2
p

and k ¼
ffiffiffiffiffiffiffiffiffi
101
p

.

6.3. Block media with piecewise constant dielectric constants

Next, we consider the scattering of incident plane waves off a block media with piecewise constant complex dielectric
materials, as shown in Fig. 10. The scattering in such a material is of great interest in the design of phase shift mask in
the VLSI lithograph technology, where the presence of metal parts in the mask with complex dielectric constants are used
to create phase shift of the impinging light rays (within X-ray range for nano-electronics) to induce finer resolution on the
chip wafer through wave interference [22]. Non-dimensionalized variables are introduced in these simulations
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x
L
! x;

y
L
! y;

ct
L
! t; Z0H! H; E! E; ð103Þ
where L = 1 rlm is the reference length, c is the speed of light in free space, Z0 ¼
ffiffiffiffi
l0
�0

q
is the free-space impedance. In Fig. 10,

one layer of metal grating locates under one layer of dielectric is used in our simulations. The computational domain is
[0,24] � [0,0.96] and the wave number of the incident wave is kx = ky = 10. The computational domain in the x-direction



Fig. 10. Distribution of � (piecewise constant case).
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is partitioned into 40 subdomains (about one wave length k in one subdomain) and the y-direction into 12 subdomains with
the first and the last subdomain being PML layers. For the Schwarz iteration, the maximum error of the boundary conditions
along all vertical interfaces are used as the residual of the Schwarz GeSEM and the error tolerance for convergence is set to be
10�6.

6.3.1. TE wave
Fifteen (15) eigen-oscillations are used along the vertical y direction and eight (8) collocation points are used in the

Chebyshev collocation in each subdomain in x-direction. The converged solution obtained by the parallel Schwarz iteration
is shown in Fig. 11 where Fig. 11a shows the real part of the total wave and Fig. 11b shows the scattering wave (discontinuity
of the field at the top material interface y = 0.48 can be observed). The 1-D plot of the Hz field at a fixed y = 0.3967 is shown in
Fig. 12a. Again, to verify the accuracy of the converged numerical solution, we repeat the GeSEM with a finer mesh (20 eigen-
oscillations in y-direction and 10 collocation points for each x-subdomains) and in Fig. 12b, the relative error between these
two converged numerical solutions confirms the numerical convergence of the GeSEM method. Fig. 12c shows the conver-
gence of the Schwarz iteration.

6.4. Block media with piecewise linear dielectric constants -TM wave

The advantage of GeSEM in the Ez (TM wave) formulation is that we can handle the case where the dielectric constant is a
piecewise linear function of the position. This allows a better approximation to general inhomogeneous media. To test the
Fig. 11. TE wave: (a) real part of the total wave and (b) real part of the scattering wave.
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GeSEM for this case, we consider a piecewise linear profile of � in Fig. 13a over a domain [0,5] � [0,5]. Again, the wave num-
ber of the incidence wave is kx = ky = 10 and 12 subdomains (about 1.5 wavelength size each) are used in both x and y direc-
tions (the first and the last subdomain in y-direction also are PML layers). Fig. 13b shows the convergence of the Schwarz
Fig. 14. (a) Real part of the total wave (linear case) and (b) real part of the scattering wave (linear case).
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iteration. The converged Schwarz GeSEM is given in Fig. 14a – real part of total wave Ez and Fig. 14b – real part of the scatter-
ing wave Es

z. To validate the GeSEM solutions, we compute the solution with three meshes


 Mesh A – 50 eigen-oscillations in y direction and 10 collocation points per subdomain in x direction;

 Mesh B – 55 eigen-oscillations in y direction and 12 collocation points per subdomain in x direction;

 Mesh C – 60 eigen-oscillations in y direction and 14 collocation points per subdomain in x direction.

Fig. 15a is the 1-D plot for Ez field fixing y = 2.9297, 2.0638, 0.4297, while Fig. 16a shows the Ez field at a fixed x = 2.5. The
difference of solutions between Mesh A and Mesh B is identified as error2 and between Mesh B and Mesh C is identified as
error1 in Figs. 15b and Fig. 16b, respectively.

7. Conclusions

In this paper, we proposed a parallel generalized eigen-oscillations spectral element method (GeSEM) for complex Helm-
holtz equations for the scattering of high frequency electromagnetic waves in dispersive inhomogeneous media. The inho-
mogeneity of the media is approximated by either piecewise constant (TE waves) or piecewise linear (TM waves) dielectric
constants. Based on the expansions of complex eigen-oscillations and a non-overlapping Schwarz domain decomposition
with a new radiation condition at the domain interfaces, the GeSEM is highly parallel and provides high resolution in the
oscillatory fields of high frequency wave interference in inhomogeneous dispersive media. However, many issues remain
to be investigated such as the mathematical theory for the extent of validity and convergence of expansions of eigen-oscil-
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lations from non-self-adjoint Helmholtz operators and the understanding of the Schwarz iteration with the proposed radi-
ation interface conditions. So far, our numerical results confirmed the convergence of the Schwarz GeSEM when the imag-
inary part of the dielectric constant is small as indicated by the simple analysis in Appendix. It will be a challenge to resolve
the convergence issue for general complex dielectric constants, which will be the topic for further research.
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Appendix. Convergence of 1-D Schwarz iteration

Here, we present the convergence analysis of Schwarz iteration for Helmholtz equation with piecewise constant coeffi-
cients for two subdomains. Denote the interval by [�a, +a] (a > 0) and the interface at x0 2 (�a, +a). The equation under con-
sideration is
1
qðxÞu

0ðxÞ
� �0

þ r2ðxÞuðxÞ ¼ 0; ð104Þ
where q(x) and r(x) are both piecewise constants, say
qðxÞ ¼
q1; x 2 ð�a; x0Þ
q2; x 2 ðx0;þaÞ

�
;rðxÞ ¼

r1; x 2 ð�a; x0Þ
r2; x 2 ðx0;þaÞ

�
; ð105Þ
and the following transmission conditions are imposed:
uðx�0 Þ ¼ uðx�0 Þ;
1
q1

u0ðx�0 Þ ¼
1
q2

u0ðxþ0 Þ:
ð106Þ
The Enguist–Majda [10] one way radiation boundary conditions at ±a are
ðox þ ik1Þuð�aÞ ¼ 0; ðox � ik2ÞuðþaÞ ¼ 0; ð107Þ
where ki ¼
ffiffiffiffiffiqi
p ri.

As a result, solution u(x) can be written as
uðxÞ ¼
L expð�ik1xÞ x 2 ð�a; x0Þ;
R expðþik2xÞ x 2 ðx0;þaÞ;

�
ð108Þ
where L and R are two undetermined coefficients, which will be computed by the Schwarz iteration. The iteration uses Robin
radiation conditions at the interface
ðox � ik1Þunþ1ðx0�Þ ¼
q1

q2
ox � ik1unðx0þÞ

� �
; ð109Þ

ðox þ ik2Þunþ1ðx0þÞ ¼
q2

q1
ox þ ik2unðx0�Þ

� �
: ð110Þ
Using (107), we obtain
Lnþ1 ¼ 1
2

q1

q2
ð1� zÞ exp½iðk1 þ k2Þx0�Rn; ð111Þ

Rnþ1 ¼ 1
2

q2

q1
1� 1

z

� �
exp½�iðk1 þ k2Þx0�Ln; ð112Þ
where z ¼ q2k2
q1k1

.
It follows that
Lnþ1 ¼ 1
4
ð1� zÞ 1� 1

z

� �
Ln�1; ð113Þ

Rnþ1 ¼ 1
4
ð1� zÞ 1� 1

z

� �
Rn�1: ð114Þ
Therefore, the convergence rate for the Schwarz iteration using the one-way radiation interface condition (108) and (109) is
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d ¼ 1
4
ð1� zÞ 1� 1

z

� �
:

Let q1k1 ¼ �k, q2k2 ¼ �kþ Dk, u ¼ Dk
�k

, then, z = 1 + u, and the convergence rate d can be rewritten as
d ¼ u2

4ð1þ uÞ : ð115Þ
Fig. 17 shows the domain in the complex u-plane where jdj < 1 which indicates the size of the variation Dk = q2k2 � q1k1 for
which the Schwarz iteration converges. It shows that the Schwarz iteration will not converge for dielectric constants with
large imaginary parts or with large contrasts or near resonance (q1k1 or q2k2 close to zero).
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